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ABSTRACT

Large Language Models are powerful models that are trained on large amount of data
to perform human level task and Transformers work as their backbone architecture.
Transformers have become SOTA. It can accommodate large scale data. However the
disadvantage is it’s model size and even larger runtime usages. Therefore it is important
to compress the model to lower it’s hardware cost and accelerate the model inference.
We aim to solve the issue by compacting the data to train and infer on transformer using
techniques like quantization and binarization. First we explore different quantization
techniques then we apply them on transformers to check sensitivity of different parts
of transformer. We tried to achieve a trade off between quantization which compresses
data to some extent, and binarization that compress data to extreme. We propose a
method that is more compressed than quantization and more accurate than binarized
method. Instead of mapping weights to -1 and 1 like we do in binarized neural network,
we use mean of weights from Xavier initialisation to get more accurate representation
of weights without losing much information. Although we couldn’t surpass the baseline
accuracy but this resulted in a better reduction ratio of the model size. We got a better
compression than quantization and better accuracy than binarization.

Keywords: Large Language Models, Transformers, Compression, Quantization, Bi-
narization, Binarized Neural Networks
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Chapter 1

Introduction

1.1 Large Language Models

Large language models (LLMs) have emerged as a transformative force in natural lan-

guage processing (NLP). These robust neural networks, trained on massive datasets of

text and code, can perform a wide range of tasks with remarkable fluency and accu-

racy. At their core, LLMs are complex neural networks trained on vast amounts of text

and code data. This training process allows them to learn the intricate relationships

between words, understand the nuances of language, and generate grammatically cor-

rect and semantically meaningful text. The architecture of LLMs often relies heavily

on the transformer model, a groundbreaking advancement in NLP introduced in the

paper ”Attention is All You Need” by Vaswani et al. (2017) [1]. Unlike traditional

recurrent neural networks (RNNs), transformers leverage self-attention mechanisms to

capture long-range dependencies within sequences [1]. This allows the model to under-

stand complex relationships between words, even if they are far apart in the sequence,

leading to superior performance in various NLP tasks [2]. LLMs generally follow a

three-step process to perform their tasks:

1. Training: This initial phase involves training the model on a massive dataset

of text and code. During this process, the LLM learns to identify relationships

between words, understand the nuances of language, and generate grammatically

correct and semantically meaningful text.

2. Encoding: When presented with an input, such as a prompt or a question, the

1



LLM encodes it into a numerical representation. This encoding captures the

meaning and context of the input, allowing the model to process it effectively.

3. Decoding: Based on the encoded input, the LLM generates an output sequence.

This could be a translation, a summary, a response to a question, or any other

form of text that aligns with the task at hand.

Despite their impressive capabilities, LLMs face several challenges that need to be ad-

dressed [3]. Training and running LLMs require significant computational resources,

including high-performance GPUs and large amounts of memory. This limits their de-

ployment on resource-constrained devices, such as smartphones or laptops, hindering

widespread application adoption. LLMs trained on biased data can perpetuate soci-

etal biases, leading to discriminatory outputs or unfair treatment of certain groups [3].

Careful attention to data selection and model training processes is crucial to mitigate

these issues and ensure responsible development. Understanding the internal workings

of large and complex LLMs can be challenging. This lack of transparency makes it

difficult to interpret their decision-making processes, raising concerns about potential

biases or errors that may go unnoticed.

The high computational demands of LLMs necessitate optimization techniques to en-

able their wider deployment on various hardware platforms and facilitate real-world

applications [4]. Explore various optimization strategies to accelerate LLMs and make

them more efficient, paving the way for their broader adoption and impact across di-

verse domains is necessary.

1.2 Transformer Architecture - The Backbone of LLMs

The transformer architecture plays a pivotal role in the remarkable capabilities of mod-

ern large language models (LLMs). It provides a powerful and efficient way to pro-

cess and understand natural language, overcoming limitations faced by previous archi-

tectures like recurrent neural networks (RNNs). RNNs, while effective in language

processing tasks, suffer from inherent drawbacks. Their sequential processing nature
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makes them computationally expensive, and they need help to capture long-range de-

pendencies within sequences effectively. With their self-attention mechanism, trans-

formers address these limitations, leading to significant advancements in NLP perfor-

mance [1].

Figure 1.1: Transformer Architecture with Self-Attention Mechanism

1.2.1 Encoder: Processing the Input Sequence

The encoder is responsible for processing the input sequence and generating a repre-

sentation that captures its meaning and context. It typically consists of multiple layers,

each containing a self-attention mechanism and a feed-forward network.

Here’s what happens within an encoder layer:

• Self-Attention: The self-attention mechanism within each layer allows the model

to attend to different parts of the input sequence and capture relationships between

words. This enriched understanding is crucial for tasks like machine translation

or question answering.

• Add & Norm: The outputs of the self-attention mechanism are added to the

original input and then normalized.
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• Feed-Forward Network: The normalized sum is passed through a feed-forward

network, which adds non-linearity to the model and allows it to learn more com-

plex relationships between words.

• Add & Norm (Again): The output of the feed-forward network is added to the

previous output and then normalized again.

The encoder stacks multiple layers, each building upon the previous one to create a

progressively richer representation of the input sequence.

1.2.2 Self Attention: Unveiling the Core Mechanism

At the heart of the transformer lies the self-attention mechanism, a revolutionary con-

cept that allows the model to understand the intricate relationships within a sequence.

Here is a deeper look at how it works:

• Query, Key, and Value Vectors: Each word in the input sequence is represented

by three vectors: query, key, and value. These vectors are created by passing the

word embedding through separate linear layers.

• Attention Scores: The model calculates attention scores for each pair of words in

the sequence. This is done by computing the dot product between the query vector

of one word and the key vector of every other word. The higher the attention

score, the more relevant the other word is to the current word.

• Weighted Sum: The attention scores are then used to weight the value vectors

of all words in the sequence. This creates a context vector that summarizes the

information relevant to the current word, considering its relationships with other

words in the sequence.

1.2.3 Decoder: Generating the Output Sequence

The decoder takes the encoded representation from the encoder and uses it to generate

the output sequence, such as a translation, a summary, or a response to a question. It

4



also utilizes self-attention mechanisms with additional complexities to handle the output

generation process.

Here is what happens within a decoder layer:

• Masked Self-Attention: The decoder employs masked self-attention, which pre-

vents the model from attending to future words in the output sequence. This

ensures the model generates the output sequentially, one word at a time.

• Encoder-Decoder Attention: The decoder also attends to the encoded represen-

tation from the encoder using another self-attention mechanism. This allows the

decoder to incorporate the context of the input sequence into the generated output.

• Add & Norm: Similar to the encoder, the outputs of the attention mechanisms

are added to the original input and then normalized.

• Feed-Forward Network: The normalized sum is passed through a feed-forward

network.

• Add & Norm (Again): The output of the feed-forward network is added to the

previous output and then normalized again.

The decoder also stacks multiple layers, with each layer using the information from the

previous layer to refine the generated output sequence.

By combining the power of self-attention with encoders and decoders, the transformer

architecture has revolutionized natural language processing, achieving remarkable re-

sults in various tasks.

1.3 Accelerating Large Language Models

Despite their remarkable capabilities, LLMs based on transformer architectures face

significant computational bottlenecks [3]. Training and running large transformer mod-

els require substantial computational resources, including high-performance GPUs and
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vast amounts of memory. This limits their deployment on resource-constrained de-

vices like laptops or smartphones, hindering widespread adoption in various applica-

tions. Processing long sequences and maintaining attention scores within transformers

requires significant memory resources [6]. This can be a significant hurdle for deploy-

ing these models on devices with limited memory. To address these challenges and

pave the way for broader LLM adoption, researchers have explored various optimiza-

tion techniques [5] aimed at accelerating transformers and making them more efficient:

1.3.1 Model Size Reduction:

• Parameter Pruning: Pruning techniques identify and remove redundant or unim-

portant parameters within the model. This reduces the overall model size, leading

to lower memory requirements and faster inference times [7].

• Knowledge Distillation: This technique involves training a smaller student model

by mimicking the outputs of a larger teacher model. This allows the student model

to capture the knowledge of the larger model while being significantly smaller and

more efficient [8].

1.3.2 Numerical Precision Reduction:

• Quantization: Quantization techniques reduce the numerical precision of model

weights and activations from 32-bit floating-point numbers (FP32) to lower pre-

cision formats like 16-bit (FP16) or even 8-bit integers (INT8) [9]. This leads to

significant memory savings and faster computations, often with minimal impact

on model accuracy.

1.3.3 Hardware and Software Optimizations:

Utilizing specialized hardware like TPUs (Tensor Processing Units) or AI accelera-

tors designed for efficient deep learning computations can significantly accelerate LLM

inference. Optimizing software libraries and frameworks to leverage the parallel pro-

cessing capabilities of GPUs and other hardware can further enhance the speed and

efficiency of transformer models.
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1.4 Objectives

Transformers have become SOTA. It can accommodate large-scale data. However, the

disadvantage is that it is a model size with even more extensive runtime usage. There-

fore, it is important to compress the model to lower its hardware cost and accelerate

the model inference. Exploring efficient and effective quantization and binarization

methods for transformers is the main focus of our project so that we can accelerate the

training and reach a converging point faster.

• Implement and modify diverse quantization and binarization methods to see how

they perform on the transformer.

• Explore the internal feature of the transformer structure and design a special quan-

tization/binarization pattern to improve the optimization of the transformer.

• Reach a trade-off between model size and bearable classification error as an opti-

mal compression strategy.

• We aim to get a compromise between quantization and binarization, achieving

the best of both.
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Chapter 2

Literature Review

2.1 Background

2.1.1 Quantization

One of the key optimization techniques for accelerating transformers is quantization

[9]. This technique involves reducing the numerical precision of model weights and

activations from the standard 32-bit floating-point format (FP32) to lower precision for-

mats like 16-bit (FP16) or even 8-bit integers (INT8). This leads to significant benefits

in terms of:

• Memory Savings: Lower precision formats require less memory to store, lead-

ing to a smaller memory footprint for the entire model[5]. This is particularly

beneficial for deploying LLMs on resource-constrained devices.

• Faster Computations: Lower precision arithmetic operations are generally faster

to perform on hardware, leading to faster inference times and improved overall

efficiency.

While reducing precision can potentially lead to a slight decrease in model accuracy,

careful implementation often results in minimal impact on performance while offering

significant efficiency gains [11]. This makes quantization a valuable tool for making

LLMs more accessible and deployable on various hardware platforms.

Here are some common quantization techniques used for transformers:
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• Post-Training Quantization: This involves quantizing a pre-trained FP32 model

to a lower precision format. This approach is relatively straightforward but may

require fine-tuning the model after quantization to recover some of the lost accu-

racy [10][16].

• Quantization-Aware Training: This technique involves training the model from

scratch with lower precision weights and activations [11][16]. This can lead to

better compatibility with the lower precision format and potentially higher accu-

racy compared to post-training quantization.

By leveraging quantization techniques, researchers are continuously pushing the bound-

aries of what’s possible in terms of LLM efficiency, paving the way for their wider

adoption in real-world applications.

2.1.2 Binarized Neural Networks

The paper by Matthieu Courbariaux et al. [12] proposes a novel type of neural net-

work architecture called Binarized Neural Networks (BNNs). Unlike standard neural

networks that use complex numbers for weights and activations, BNNs constrain these

values to be either +1 or -1 during runtime.

This extreme simplification leads to several advantages:

• Reduced memory footprint: Since weights and activations are binary, they re-

quire significantly less memory to store compared to traditional floating-point

values.

• Faster computations: BNNs replace complex multiplications with bitwise oper-

ations like XNOR, which are much faster to perform on hardware. This translates

to improved power efficiency.

• Potential for hardware acceleration: The binary nature of BNNs aligns well

with specialized hardware designs, potentially leading to significant performance

gains.
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Threshold Functions in BNNs

Threshold functions play a crucial role in BNNs, determining how the continuous out-

puts from the network are converted into the binary values (+1 or -1) required for

weights and activations during inference. Here are two commonly used threshold func-

tions in BNNs:

• Sign Threshold Function: This is the most widely used threshold function in

BNNs. It is a simple function defined as:

threshold(x) = σ(x) =


+1, if x ≥ 0

−1, if x < 0

The sign function maps any real-valued input (x) to either +1 or -1 based on its

sign. If the input is positive or zero, it becomes +1. Conversely, if the input

is negative, it becomes -1. This function effectively binarizes the weights and

activations during inference.

• Hard Tangent Threshold Function: While less commonly used than the sign

function, the hard tangent function can also be employed for binarization. It is

defined as:

threshold(x) = hardTanh(x) =


+1, if x > 0

−1, if x ≤ 0

Similar to the sign function, the hard tangent function binarizes the input by map-

ping positive values to +1 and non-positive values to -1. However, unlike the sign

function, the hard tangent function introduces a small dead zone around zero.

This can potentially lead to slightly different network behavior compared to the

sign function.
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Training

However, training BNNs presents a challenge. The standard training algorithms rely

on gradients calculated using real-valued weights and activations. The authors address

this by proposing a method that uses binary values during training to compute gradients

but accumulates them in real-valued variables. This approach leverages the benefits

of SGD (Stochastic Gradient Descent) [13] while maintaining the binary constraint for

inference. This essentially ignores the non-differentiability of the threshold function

and treats it as an identity function (output equals input) for gradient calculation. This

allows the gradients from the previous layer to be ”passed through” to the weights and

activations in the BNN layer.

The authors propose a training method that incorporates the following key steps:

• Binary Training with Real-Valued Accumulations: During training, the BNN

operates with binary weights and activations. However, for each weight wi, a

surrogate variable w′
i (real-valued) is introduced. This surrogate variable is a real-

valued number that accumulates the gradients calculated using the binary weights

during each training iteration.

• Gradient Updates: After each forward and backward pass, the gradients are

computed based on the current binary state of the weights and activations. These

gradients are used to update the surrogate variables w′
i:

∆w′
i = η × δloss

δai
,where η is the learning rate

• Binarization after Update: Following the gradient update using the accumu-

lated values in the surrogate variables, the weights are binarized by applying a

threshold function (typically a sign function). This ensures that the weights re-

main constrained to +1 or -1 during inference.

wi = σ(w′
i)
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In essence, the training process in BNNs leverages real-valued calculations during train-

ing to compute gradients and then applies a threshold function like the sign function to

convert these values to the binary domain (+1 or -1) used for inference. This approach

enables BNNs to train using well-established algorithms like SGD while maintaining

the desired binary constraint for efficient execution.

2.1.3 Straight-Through Estimator

The straight-through estimator provides a way to approximate the gradients of non-

differentiable operations during the backward pass of backpropagation. The key idea

behind the STE is to treat the non-differentiable operation as if it were the identity

function during the backward pass, while still applying the actual non-differentiable

operation during the forward pass.

Methodology

Mathematically, let’s consider a non-differentiable function f(x), where x is the input to

the function. During the forward pass, the output y is computed as y = f(x). However,

during the backward pass, instead of computing the actual gradient of f(x), which may

be undefined or computationally expensive, the STE approximates the gradient as:

δy

δx
= 1

This approximation means that the gradient is treated as if the non-differentiable func-

tion were the identity function, allowing the backpropagation algorithm to propagate

the gradients through the non-differentiable operation.

Use Case

The straight-through estimator is particularly useful in situations such as:

Quantization: Quantization involves rounding or clipping values to a specific number

of bits, which is a non-differentiable operation.

Discretization: Discrete operations includes sampling from a categorical distribution

or selecting the maximum value in a softmax output.
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Attention mechanisms: In transformer, scaled dot-product attention uses non-differentiable

operations like masking or softmax with temperature.

2.1.4 Xavier Initialization

The goal of Xavier initialization [14] is to solve the issue of vanishing or exploding gra-

dients, which can happen when deep neural networks are being trained. These problems

occur when gradients get too big (exploding gradients) or too tiny (vanishing gradients),

which causes instability or inefficiency in the learning process.

Initialization

Weights can be initially sampled from either Gaussian or uniform distribution within

the open set (−1,+1), and have all the weights scaled down by
√
din where din is the

dimension of input vector to a layer.

Wm×n = [wij]m×n =
1√
din

[
clip−1,1

x∼D
(x)

]
m×n

where,

clipα,β(x) =


α , if x ≤ α

β , if β ≤ x

x , otherwise

Working Principle

Xavier initialization sets the neural network’s weights such that the variance of each

layer’s outputs is roughly equal to the variance of its inputs. This aids in keeping the

gradients from inflating or disappearing during the backpropagation phase, which up-

dates the weights in accordance with the gradients.

• If the weights are initialized randomly with mean 0 and variance σ2, and there are

nin inputs, the variance of the output of a neuron will be nin × σ2.

• To ensure that the variance of the output is approximately equal to the variance

of the inputs, we need to scale the weights by 1√
nin

.
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Xavier initialization is often used in layers where the activation function can be linearly

approximated near zero like tanh, and sigmoid.

2.2 Related Works

Weight sharing is based on the idea that large-scale models, like the Transformer [2], are

excessively parameterized. By utilising the same parameters for several calculations,

this method makes it easier to separate computation from parameters. Pre-trained lan-

guage model checkpoints are used by [18] to initialise a sequence-to-sequence model.

In an effort to use less memory, they test the use of a shared encoder and decoder. In

an attempt to find the best usage of parameters from one layer to another layer, [19]

carefully explore techniques for weight sharing across levels. ”Sandwich-style” param-

eter sharing is a method [20] that suggests sharing weights for the centre layers while

keeping the first and last layers independent.

[21] proposed an idea of pruning, which is a way of eliminating weights from a neural

network that are not required to improve storage and memory performances. In certain

instances, it can also preserve model performance while improving computational and

temporal economy. Redundancy in the multi-head attention of the Transformer was

explained in these papers [22]. To remove attention heads from the Transformer, a

first-order method was used in both investigations. Later, [23] presented LayerDrop,

an organised dropout method, in 2020. During the Transformer training process, this

approach applies random dropout to every layer.

W8A8, or INT8 quantization, may now be applied to all linear layers in transformers

without reducing accuracy thanks to recent research [24]. In addition, [24] provide

an INT8 inference pipeline and show notable end-to-end (E2E) performance gains over

FP16 model inference. The state-of-the-art open-source INT8 implementations found in

NVIDIA’s FasterTransformer [25] explore aggressive quantization techniques: mode-1

quantizes the attention computation beyond linear layers, and mode-2 further quantizes

the residual connection while balancing latency and accuracy. A complete W4A4 en-

coder inference pipeline supporting various quantization techniques was demonstrated

14



in [26].

[12] presented a way of training neural networks using an approach called Binarycon-

nects [27] where weights are constraints between -1 to 1. A unique elastic binary acti-

vation function with learnt parameters, a two-set binarization scheme, and a technique

to quantize a network to its limit by progressively distilling higher precision models

into lower precision models are proposed in [28].
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Chapter 3

Proposed Methodology

We introduce a novel method to improve the performance of binarized nueral networks.

Instead of using the signum function, σ(x), with range {−1, 1}, we propose use of

better representative for pre-weights that are to be binarized.

3.1 Representation Error

Let there be a map f : X → Y . We can restrict Y to make f surjective without loss of

generalization. Since f is a function and every element x ∈ X has an image f(x) ∈ Y ,

we know that |X| ≥ |Y |. If f is bijective, then |X| = |Y |, and we can construct an

inverse map f−1 : Y → X . This means that the information is preserved in bijective

map.

When we have a non-bijecive map, i.e. there are elements in X that are mapped to same

values in Y , we have |X| > |Y |. In this case, we are losing information and we would

not be able to retrieve the information back once the information is mapped.

3.1.1 Nearest Point Representation

We define a nearest point representation on a set C ∈ ℘(R), a map NC : R→ R as

NC(x) = argmin
Ci∈C

||x− Ci||
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3.1.2 Measure for Information Loss

If we fix a dataset X = {xi | i ∈ N}, we can define representation error as the

information lost on applying nearest point representation. We can define it as:

ϵr(C) =
∑
xi∈X

(xi −NC(xi))
2

Since X is fixed, we have to choose C that minimizes the representation error to pre-

serve the maximum information. We will fix the size of C to be k, and hence our

optimization problem can be written as:

Objective

minimize ϵr(C)

Constraint

C ∈ Rk

3.1.3 Minimizing Representation Error

Let us decompose X into {Xi | i ∈ k} with following properties:

1. Exhaustive
k⋃

i=1

Xi = X

2. Mutually Exclusive

Xi ∩Xj = ∅↔ i ̸= j

3. Representative

∀x ∈ Xi,NC(x) = Ci

We can rewrite representation error as

17



ϵr(C) =
∑
xi∈X

(xi −NC(xi))
2

=
∑
Ci∈C

∑
xj∈Xi

(xj − Ci)
2


=
∑
Ci∈C

P (Ci)

where P (Ci) =
∑

xj∈Xi
(xj − Ci)

2

The way X is decomposed into XD = {Xi | i ∈ k}, P : XD → R maps on inde-

pendent sets, and hence to optimize ϵr(C), we can optimize P (Ci)∀i ∈ k individually.

Since our objective is to minimize P (Ci) ∈ R and our only independent variable is

Ci ∈ R, we can find the value of Ci as:

dPi

dC
i

= 0

d
(∑

xj∈Xi
(xj − Ci)

2
)

dCi

= 0∑
xj∈Xi

(
d(xj − Ci)

2

dCi

)
= 0

∑
xj∈Xi

(
d(xj − Ci)

2

d(xj − Ci)

d(xj − Ci)

dCi

)
= 0

∑
xj∈Xi

(2(xj − Ci)×−1) = 0

∑
xj∈Xi

(xj − Ci) = 0

∑
xj∈Xi

Ci =
∑
xj∈Xi

xj

Ci

∑
xj∈Xi

1 =
∑
xj∈Xi

xj

Ci × |Xi| =
∑
xj∈Xi

xj

Ci =

∑
xj∈Xi

xj

|Xi|
= Xi
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3.2 Decomposition into Open Sets

As we can see in previous derivations, we achieve the minimum representation error

when we pick representative Ci as the mean of Xi.

So far we had fixed the decomposition XD, but now that we know, given XD, to pick

Ci = Xi for minimum ϵr(C), we can now shift our focus to finding the best decompo-

sition XD to achieve minimum ϵr(C).

Observe:

• Since X ∈ ℘(R) and C ∈ Rk, all the points we are interested in exist on R.

• Since we are using nearest point representative, ∃!Ci∀x ∈ R ∋ NC(x) = Ci.

• Since limδx→0NC(x + δx) = NC(x), we can conclude that all small neighbor-

hood of any point on R will belong to the same decomposed set.

Following the observation, R being a metric space, we can conclude that given a C,

we can decompose R into disjoint open sets {Si | i ∈ k} that is dense in R. Since

X ∈ ℘(R), ∀i ∈ k∃!Si ∋ Xi ⊆ Si.

3.3 Thresholding Tree

We can express the thresholding function in the form of tree where each in-node is a

threshold deciding which open set a data point falls in, and the leaf node decides the

representation from an open set.

The tree we obtain as a result would be full binary tree. If there are 2k open sets, we

will have a tree of height k and 2k − 1 nodes in total.

We can store the tree as an array T =< Ti | i ∈ 2k >, where ∀i ∋ i < 2k−1, Ti is the

parent of T2i+1 and T2i+2.

Since our task is of just binarizing, we will limit ourselves to 2 open set. Hence our

thresholding tree will have 3 nodes, of which 1 will be a threshold T , and 2 will be

representatives, X1 and X2 respectively.
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3.4 Bucketing

Given C, decomposing X to XD would require us to sort X = {xi | i ∈ |X|} and

this might be expensive using comparision based sorting algorithm that would take

O(n log n) time, where n = |X| is usually huge.

Figure 3.1: Bucketing Data

Figure 3.2: Forgetting Actual Value But Tracking Frequency

We will try using linear sorting algorithm like bucket sort, with the only difference is

that we will forget the actual value of variables within a bucket. Hence it is a lossy

bucket sort. This achieves two things -

1. Sorting X in O(n) time.

2. Reduce n weights to k data points, where k ≪ n and is much faster to work with.

Algorithm 1 Hash Function that Maps (-lim,lim) to (0,bucket size) Preserving Order
procedure ORDERED HASH(value,limit,bucket count)

return bucket count × (value + limit) / limit
end procedure

Algorithm 2 Calculates Frequency of Data in Each Bucket
procedure BUCKET DATA(data)

for i ∈ data do
bucket[ordered hash(i)]← bucket[ordered hash(i)] +1

end for
return bucket

end procedure
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3.4.1 Least Bucket Frequency

Let there be a threshold T that defines two open set on it’s left and right. Since these

open sets would be dense with data points in X for near representation, T would be in

a region with relatively low density.

Hence we can count frequency of data point in each bucket in O(n) time, and then find

the bucket with least frequency in another O(n) time. The mid-point of this bucket can

be chosen as threshold T that defines the two open set.

Algorithm 3 Finds Threshold Using Least Bucket Frequency
procedure LEAST DENSE THRESHOLD(data,limit,bucket size)

bucket← bucket data(data)
target← 0
for f ∈ bucket do

if bucket[i] < bucket[target] then
target← i

end if
end for
return − limit + (1 + target) × bucket size / 2

end procedure

3.4.2 Running Sum of Buckets

We can get a more accurate threshold T by taking a running sum of xi over bucket. The

representation error at ith bucket would be:

ϵr(C) = P (C<i) + P (Ci≤)

=
i−1∑
j=0

fj(xj −X<i)
2 +

n∑
j=i

fj(xj −X i≤)
2

Since both terms added in last equation are similar, we will simplify only one of them:
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i−1∑
j=0

fj
(
xj −X<i

)2
=

i−1∑
j=0

fj

(
x2
j − 2xjX<i +X

2

<i

)
=

i−1∑
j=0

fjx
2
j −

i−1∑
j=0

2fjxjX<i +
i−1∑
j=0

fjX
2

<i

=
i−1∑
j=0

fjx
2
j − 2X<i

i−1∑
j=0

fjxj +X
2

<i

i−1∑
j=0

fj

Similarly

n∑
j=i

fj(xj −X i≤)
2 =

n∑
j=i

fjx
2
j − 2X i≤

n∑
j=i

fjxj +X
2

i≤

n∑
j=i

fj

=

(
n∑

j=0

fjx
2
j −

i−1∑
j=0

fjx
2
j

)
− 2X i≤

(
n∑

j=0

fjxj −
i−1∑
j=0

fjxj

)

+X
2

i≤

(
n∑

j=0

fj −
i−1∑
j=0

fj

)

Let

T1 (Total Sum) =
n∑

j=0

fjxj

T2 (Total Squared Sum) =
n∑

j=0

fjx
2
j

Tf (Total Frequency) =
n∑

j=0

fj

S1 (Running Sum) =
i−1∑
j=0

fjxj

S2 (Running Squared Sum) =
i−1∑
j=0

fjx
2
j

Sf (Running Frequency) =
i−1∑
j=0

fj
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Then we can rewrite both the term as
i−1∑
j=0

(
xj −X<i

)2
= S2 − 2S1X<i + SfX

2

<i

= S2 − 2S1

(
S1

Sf

)
+ Sf

(
S1

Sf

)2

= S2 − 2

(
S2
1

Sf

)
+

(
S2
1

Sf

)
= S2 −

S2
1

Sf

n∑
j=i

(xj −X i≤) =

(
n∑

j=0

fjx
2
j −

i−1∑
j=0

fjx
2
j

)
− 2X i≤

(
n∑

j=0

fjxj −
i−1∑
j=0

fjxj

)

+X
2

i≤

(
n∑

j=0

fj −
i−1∑
j=0

fj

)

= (T2 − S2)− 2(T1 − S1)X i≤ + (Tf − Sf )X
2

i≤

= T2 − S2 − 2(T1 − S1)

(
T1 − S1

Tf − Sf

)
+ (Tf − Sf )

(
T1 − S1

Tf − Sf

)2

= T2 − S2 − 2
(T1 − S1)

2

Tf − Sf

+
(T1 − S1)

2

Tf − Sf

= T2 − S2 −
(T1 − S1)

2

Tf − Sf

Hence we can run the representation error at choosing ith bucket for thresholding as

ϵr(C) =
i−1∑
j=0

fj(xj −X<i)
2 +

n∑
j=i

fj(xj −X i≤)
2

=

(
S2 −

S2
1

Sf

)
+

(
T2 − S2 −

(T1 − S1)
2

Tf − Sf

)
= T2 −

S2
1

Sf

− (T1 − S1)
2

Tf − Sf

Algorithm 4 Finding Representation Error At Intermediate Step
procedure GET REPR ERR(T1, T2, Tf , S1, Sf )

return T2 − (S2
1/Sf )− (T1 − S1)

2/(Tf − Sf )
end procedure

As we can see, we need to find the total sum and frequency once in O(n) time while

we bucket the data at the same time. Then we go though all the k buckets with running
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Algorithm 5 Find Threshold Using Running Sum and Frequency
procedure RUNNING BUCKET(data,limit,bucket size)

bucket← bucket data(data)
target← 0
minError←∞
T1← get total sum(data)
T2← get total squared sum(data)
Tf ← get total frequency(data)
S1← 0
Sf ← 0
count← 0
for f ∈ bucket do

bucket value←− limit + (1 + count) × bucket size / 2
S1 ← S1 + f× bucket value
Sf ← Sf + f
curError← get repr err(T1, T2, Tf , S1, Sf )
if curError < minError then

target← i
end if
count← count +1

end for
return − limit + (1 + target) × bucket size / 2

end procedure

sum and frequncy to find the threshold that results in minimum representation error in

O(k) time.

Hence we can update the representative in O(n + k) time, where n is the number of

data, and k is the bucket count.

3.5 Initialization

Figure 3.3: Initial State of Threshold Tree

Since at the beginning, the weights are uniformly sampled from the range (− 1√
din

,+ 1√
din

),

we can pick the initial threshold T as the mean of the weights, which would be 0.

With 0 as our threshold, we will get two open set - (− 1√
din

, 0) and (0,+ 1√
din

), whose

representative would be their mean, which is − 1
2
√
din

and + 1
2
√
din

respectively.
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Hence we start our algorithm with initial thresholding tree as T =< 0,− 1
2
√
din

,+ 1
2
√
din

>

Algorithm 6 Constructor for Threshold Tree with Initial State
procedure THRESHOLD TREE NEW

repr← 1
2
√
din

return (0,−repr, repr)
end procedure
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Chapter 4

Results and Discussion

4.1 Experimental Setup

As our baseline, we construct a transformer model with two encoder layers for the

text classification task. We use AG NEWS [15] dataset to train the models. Basic

quantization (weights only) [16], full quantization (weights and activation) [16], and

binarization methods [12] are implemented and tested on the transformer. We also

explored the sensitivity of different parts of the transformer. We designed a unique

pattern for transformer quantization that only quantizes Query and Key without Value,

based on the observation that we only care about the similarity between query and key

instead of absolute values.

For all models in all experiments, we maintained the same training setting and trained

for ten epochs for comparability. We used Cross Entropy Loss as a loss function to

calculate the loss. Each model took around 3-4 hours to train. The models were trained

using Adam optimizer, with a learning rate of 0.0001 and a batch size of 32. We used

MultiStepLR as a learning rate scheduler with a milestone of 10-15 epochs. Hugging

face library is used for tokenization using BERT [17]. The code is written in Cuda and

Python with the help of the PyTorch framework. Models were trained on RTX3060

GPU with RAM 16G and VRAM 6G.

The evaluation metrics used are:

• Accuracy: Measures how often a model predicts a correct outcome. Higher
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accuracy indicates better performance.

• Model Size: Amount of storage obtained by multiplying the number of parame-

ters with the precision bytes. Lower model size means reduced memory footprint

and potentially faster inference times.

• Reduction Ratio: The base model size is divided by the compressed model size.

The higher the ratio, the better the compression.

Reduction Ratio =

(
Original size− Compressed size

Original size

)
× 100%

4.2 Results Analysis

We designed three experiments to explore quantization patterns for transformers.

In our first experiment, we implement and modify diverse quantization methods and

basic binarization to see how it performs on the transformer.

Our second experiment focuses on the sensitivity of different transformer parts. We

leave out the input embedding layer and quantize other parts of the transformer, respec-

tively, to see the sensitivity of each part. Then, based on our observation, we designed

two improvements to accommodate the transformer’s specialty.

In our third experiment, we compared our method with baseline, 4-bit Quantized

(weights only), and basic binarized model. We compare the accuracy, model size, and

reduction ratio and highlight the best.

4.2.1 Experiment 1

In our first experiment, we implement and modify diverse quantization methods to see

how they work for transformers. On the left is the training curve plotted every 100

iterations. On the right side is the test set performance for every epoch. On the bottom

is the final performance and model size table. First, we plotted for quantizations and

then binarization. Here are the results of our first experiment.
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Quantization:

Figure 4.1: Train & and Test set performance (Quantization)

Model Accuracy Model Size Reduction Ratio

baseline 91.8 78.7M -

8-bit quant 91.6 38.6M 50.95 %

4-bit quant 91.8 19.7M 74.96 %

2-bit quant 91.8 10.2M 87.03 %

fully quant 83.2 38.6M 50.95 %

Table 4.1: Quantization methods

Binarization:

Figure 4.2: Train and Test set performance (Binarization)
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Model Accuracy Model Size Reduction Ratio

baseline 91.8 78.7M -

basic binarization 83.7 4.7M 94.03 %

Table 4.2: Binarization method

Observation: For quantization, we can see that basic quantization, which quantizes

weight only, performs very well; it reduces model size a lot with nearly no sacrifice of

accuracy. To continue, we develop a model based on a full quantization method, which

quantizes both weight and activation. This model has a large runtime size reduction

but suffers from a performance drop, indicating that activation is more critical for the

transformer. We will design different methods to improve later.

The model size is significantly reduced for binarization, but a significant drop in per-

formance can also be observed, resulting from minimal model representation ability.

4.2.2 Experiment 2

As we saw from experiment 1, Basic Binarization provides a lower accuracy. So, if

the whole model is binarized, it cannot learn anything. We will solve this problem

with the following two improvements. We explore the sensitivity of different parts of

transformers.

Improvement 1 - Final linear layer is crucial

After some analysis, we found that the final linear layer in the classifier is crucial. We

trained two models, one with all layers binarized and one with all but the final layer

binarized. The results are shown below:
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Figure 4.3: Train and Test set performance (W & W/O Final Layer)

Model Accuracy Model Size Reduction Ratio

all 25.0 4.7M 94.03 %

all except final 83.7 4.7M 94.03 %

Table 4.3: Performance W and W/O Final Layer

If the final layer remains complete precision, the whole model performance will in-

crease to normal because the final layer controls the output scores for each class.

Improvement 2 - Treat Q,K,V in attention layer differently

Then, as we discussed before, query and key should be more robust to binarization

based on the intuition that similar items should still be similar even if binarized. We

compare the model with QKV, all binarized, and that with only QK binarized. This en-

sures that the improvement does not come from incrementing full precision parameters.

We also trained the model with only QV and KV binarized. The results show that the

QK model only performs significantly better than others, proving our assumption. The

results are shown below:
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Figure 4.4: Train & Test set performance (Binarized QK vs QKV)

Model Accuracy Model Size Reduction Ratio

all except final 83.7 4.7M 94.03 %

all (QK) except final 89.3 22.8M 71.03 %

all (QV) except final 86.7 22.8M 71.03 %

all (KV) except final 86.2 22.8M 71.03 %

Table 4.4: Effect of Binarized QK vs QKV

4.2.3 Experiment 3

Our third experiment compared our method with baseline, 4-bit Quantized (weights

only), and basic binarized model. We compare the accuracy, model size, and reduction

ratio and highlight the best. The results are shown below:

Figure 4.5: Train & Test set performance (Our Method vs Existing)
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Model Accuracy Model Size Reduction Ratio

baseline 91.8 78.7M -

Quantization(4 bit) 91.8 19.7M 74.96 %

Binarization 83.7 4.7M 94.03 %

Our method 90.1 4.7M 94.03 %

Table 4.5: Our Method vs Existing Optimization Methods

Our method accelerates convergence and has an essential binarized model size. So, we

have a better accuracy and reduction ratio than the modified binarized method. Note

that an essential advantage of our method is that we no longer need pre-trained weights,

which may accelerate the whole training process.
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Chapter 5

Conclusion and Future work

5.1 Conclusion

We have been able to achieve a compromise between baseline, that works with full

precision weights achieving highest accuracy, and BNN, that makes computations in

LLM fast and efficient on low edge device, but at the cost of losing of accuracy. Our

proposed work is as compressed as BNN, where each weight is represented by 1 bit,

and yet, it achieves an accuracy close to the baseline.

5.1.1 Drawbacks

• It doesn’t make computation of matrix multiplication fast as one could do in BNN

using bit manipulation.

• It can’t make use of tricks like XNORnet that accelerates layer on FPGA .

• It doesn’t reach the the peak performance as fast as a full precision transformer.

5.1.2 Application

Despite it’s drawback, it opens window for many opportunities. Now that we are able

to compress data to it’s limit without loss of accuracy, it makes data movement easier.

This makes even more areas feasible:

Internet of Things Each device in an IoT would be able to store the weights, and at

worse would need very minimal amount of streaming of data to make an inference

on a neural network task.
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Edge Computing Data needed for inference being compressed makes it possible to

move it close to the edge. Data can be cached at different level of proximity

of end users using edge devices that makes inference much faster than what a

centralized computing system can offer.

Distributed Network Compressed data would consume less bandwidth, and with the

power of being able to cache them more and making them feasible on low end de-

vices, one can make storing weights and inferring on LLM totally on a distributed

system.

5.2 Future Work

Acceleration on FPGA Once one has found the representation map, one can fix those

value of representation on multipliers or have a small look up table close to pro-

cessing unit for fast access.

Extending to n-bit One can extend the idea of dividing the weights into two open

set and choosing a prepresentative to form 2n open sets and have a hierarchy of

open set that can be stored as a tree where each in-nodes would be a threshold

and leaf node would be the representative. It can serve as an alternative to n-bit

quantization.

Memory Management One can use custom allocators for efficient use of memory.

One can also focus on order of access of elements in matrices to exploit improve-

ment from burst transfer and better caching due to principle of locality.

Transport Layer Protocol One can classify the data needed into static, streaming and

dynamic class, and have separate protocols best suiting the need and performance

for each one of them.
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